Ever-Power Worm Gear Reducer
High-efficiency, high-power double-enveloping worm reducer
Overview
Technical Info
Low friction coefficient on the gearing for high efficiency.
Powered by long-lasting worm gears.
Minimum speed fluctuation with low noise and low vibration.
Lightweight and compact in accordance with its high load capacity.
The structural strength of our cast iron, Heavy-duty Right angle (HdR) series worm gearbox is because of how we dual up the bearings on the input shaft. HdR series reducers are available in speed ratios which range from 5:1 to 60:1 with imperial center distances ranging from 1.33 to 3.25 inches. Also, our gearboxes are given a brass spring loaded breather connect and come pre-packed with Mobil SHC634 synthetic gear oil.
Hypoid vs. Worm Gears: A More Cost Effective Right-Angle Reducer
Introduction
Worm reducers have been the go-to alternative for right-angle power transmission for generations. Touted because of their low-cost and robust structure, worm reducers could be
found in almost every industrial setting requiring this type of transmission. However, they are inefficient at slower speeds and higher reductions, create a lot of high temperature, take up a lot of space, and require regular maintenance.
Fortunately, there can be an option to worm gear units: the hypoid gear. Typically found in automotive applications, gearmotor businesses have started integrating hypoid gearing into right-angle gearmotors to solve the issues that occur with worm reducers. Available in smaller general sizes and higher reduction potential, hypoid gearmotors have a broader range of feasible uses than their worm counterparts. This not only allows heavier torque loads to become transferred at higher efficiencies, nonetheless it opens options for applications where space is Gearbox Worm Drive usually a limiting factor. They are able to sometimes be costlier, but the savings in efficiency and maintenance are really worth it.
The following analysis is targeted towards engineers specifying worm gearmotors in the range of 1/50 to 3 horsepower, and in applications where speed and torque are controlled.
Just how do Worm Gears and Hypoid Gears Differ?
In a worm gear arranged there are two components: the input worm, and the output worm gear. The worm is definitely a screw-like equipment, that rotates perpendicular to its corresponding worm equipment (Figure 1). For example, in a worm gearbox with a 5:1 ratio, the worm will full five revolutions while the output worm gear is only going to complete one. With a higher ratio, for example 60:1, the worm will full 60 revolutions per one output revolution. It really is this fundamental arrangement that causes the inefficiencies in worm reducers.
Worm Gear Set
To rotate the worm equipment, the worm only experiences sliding friction. There is absolutely no rolling component to the tooth contact (Shape 2).
Sliding Friction
In high reduction applications, such as for example 60:1, there will be a huge amount of sliding friction due to the lot of input revolutions necessary to spin the output gear once. Low input rate applications have problems with the same friction problem, but also for a different reason. Since there is a lot of tooth contact, the original energy to begin rotation is greater than that of a similar hypoid reducer. When driven at low speeds, the worm requires more energy to continue its movement along the worm equipment, and lots of that energy is dropped to friction.
Hypoid versus. Worm Gears: A More Cost Effective Right-Angle Reducer
However, hypoid gear sets consist of the input hypoid gear, and the output hypoid bevel gear (Figure 3).
Hypoid Gear Set
The hypoid gear established is a hybrid of bevel and worm equipment technologies. They encounter friction losses because of the meshing of the gear teeth, with minimal sliding involved. These losses are minimized using the hypoid tooth pattern that allows torque to end up being transferred smoothly and evenly over the interfacing areas. This is what gives the hypoid reducer a mechanical benefit over worm reducers.
How Much Does Effectiveness Actually Differ?
One of the primary problems posed by worm gear sets is their insufficient efficiency, chiefly at high reductions and low speeds. Common efficiencies may differ from 40% to 85% for ratios of 60:1 to 10:1 respectively. Conversely, hypoid gear sets are usually 95% to 99% efficient (Figure 4).
Worm vs Hypoid Efficiency
“Break-In” Period
In the case of worm gear sets, they don’t run at peak efficiency until a particular “break-in” period has occurred. Worms are usually made of metal, with the worm gear being manufactured from bronze. Since bronze is usually a softer steel it is good at absorbing heavy shock loads but does not operate efficiently until it’s been work-hardened. The high temperature generated from the friction of regular operating conditions helps to harden the top of worm gear.
With hypoid gear models, there is no “break-in” period; they are typically made from metal which has already been carbonitride warmth treated. This enables the drive to operate at peak efficiency as soon as it is installed.
How come Efficiency Important?
Efficiency is among the most important things to consider whenever choosing a gearmotor. Since many employ a long service lifestyle, choosing a high-efficiency reducer will minimize costs related to procedure and maintenance for a long time to come. Additionally, a far more efficient reducer permits better reduction capacity and use of a motor that
consumes less electrical energy. Solitary stage worm reducers are typically limited to ratios of 5:1 to 60:1, while hypoid gears possess a reduction potential of 5:1 up to 120:1. Typically, hypoid gears themselves just go up to decrease ratios of 10:1, and the additional reduction is provided by a different type of gearing, such as for example helical.
Minimizing Costs
Hypoid drives may have an increased upfront cost than worm drives. This can be attributed to the additional processing techniques necessary to produce hypoid gearing such as for example machining, heat treatment, and special grinding methods. Additionally, hypoid gearboxes typically make use of grease with extreme pressure additives instead of oil that will incur higher costs. This cost difference is made up for over the lifetime of the gearmotor because of increased performance and reduced maintenance.
A higher efficiency hypoid reducer will eventually waste less energy and maximize the energy getting transferred from the motor to the driven shaft. Friction is wasted energy that takes the form of warmth. Since worm gears create more friction they run much hotter. Oftentimes, using a hypoid reducer eliminates the necessity for cooling fins on the motor casing, further reducing maintenance costs that might be required to keep carefully the fins clean and dissipating temperature properly. A comparison of motor surface temperature between worm and hypoid gearmotors can be found in Figure 5.
In testing the two gearmotors had equally sized motors and carried the same load; the worm gearmotor produced 133 in-lb of torque as the hypoid gearmotor created 204 in-lb of torque. This difference in torque is because of the inefficiencies of the worm reducer. The engine surface temperature of both systems began at 68°F, room temperature. After 100 minutes of operating time, the temperature of both units started to level off, concluding the test. The difference in temperature at this stage was considerable: the worm unit reached a surface temperature of 151.4°F, while the hypoid unit only reached 125.0°F. A difference of about 26.4°F. Despite becoming powered by the same motor, the worm unit not only produced much less torque, but also wasted more energy. Bottom line, this can lead to a much heftier electrical bill for worm users.
As previously mentioned and proven, worm reducers run much hotter than equivalently rated hypoid reducers. This decreases the service life of these drives by placing extra thermal stress on the lubrication, bearings, seals, and gears. After long-term exposure to high heat, these components can fail, and oil changes are imminent due to lubrication degradation.
Since hypoid reducers operate cooler, there is little to no maintenance required to keep them working at peak performance. Essential oil lubrication is not needed: the cooling potential of grease is enough to ensure the reducer will run effectively. This eliminates the necessity for breather holes and any installation constraints posed by essential oil lubricated systems. It is also not necessary to replace lubricant since the grease is intended to last the lifetime use of the gearmotor, eliminating downtime and increasing efficiency.
More Power in a Smaller sized Package
Smaller motors can be utilized in hypoid gearmotors because of the more efficient transfer of energy through the gearbox. In some instances, a 1 horsepower engine driving a worm reducer can produce the same output as a comparable 1/2 horsepower electric motor driving a hypoid reducer. In one study by Nissei Corporation, both a worm and hypoid reducer had been compared for make use of on an equivalent software. This research fixed the reduction ratio of both gearboxes to 60:1 and compared motor power and result torque as it related to power drawn. The study figured a 1/2 HP hypoid gearmotor can be used to provide similar overall performance to a 1 HP worm gearmotor, at a fraction of the electrical price. A final result displaying a comparison of torque and power usage was prepared (Figure 6).
Worm vs Hypoid Power Consumption
With this reduction in motor size, comes the benefit to use these drives in more applications where space is a constraint. Due to the method the axes of the gears intersect, worm gears consider up more space than hypoid gears (Determine 7).
Worm vs Hypoid Axes
Coupled with the capability to use a smaller motor, the overall footprint of the hypoid gearmotor is a lot smaller than that of a similar worm gearmotor. This also helps make working conditions safer since smaller sized gearmotors pose a lower threat of interference (Figure 8).
Worm vs Hypoid Footprint Compairson
Another benefit of hypoid gearmotors is they are symmetrical along their centerline (Shape 9). Worm gearmotors are asymmetrical and result in machines that are not as aesthetically satisfying and limit the amount of possible mounting positions.
Worm vs Hypoid Form Comparison
In motors of equal power, hypoid drives much outperform their worm counterparts. One important aspect to consider is certainly that hypoid reducers can move loads from a lifeless stop with more relieve than worm reducers (Body 10).
Worm vs Hypoid Allowable Inertia
Additionally, hypoid gearmotors can transfer substantially more torque than worm gearmotors above a 30:1 ratio due to their higher efficiency (Figure 11).
Worm vs Hypoid Result Torque
Both comparisons, of allowable inertia and torque produced, were performed using equally sized motors with both hypoid and worm reducers. The outcomes in both research are obvious: hypoid reducers transfer power better.
The Hypoid Gear Advantage
As demonstrated throughout, the advantages of hypoid reducers speak for themselves. Their style allows them to run more efficiently, cooler, and provide higher reduction ratios when compared to worm reducers. As verified using the studies provided throughout, hypoid gearmotors are designed for higher preliminary inertia loads and transfer more torque with a smaller motor than a comparable worm gearmotor.
This can lead to upfront savings by allowing the user to buy a smaller motor, and long-term savings in electrical and maintenance costs.
This also allows hypoid gearmotors to be a much better option in space-constrained applications. As shown, the entire footprint and symmetric style of hypoid gearmotors makes for a far more aesthetically pleasing style while enhancing workplace safety; with smaller, less cumbersome gearmotors there exists a smaller chance of interference with workers or machinery. Obviously, hypoid gearmotors are the most suitable choice for long-term cost savings and reliability compared to worm gearmotors.
Brother Gearmotors offers a family group of gearmotors that enhance operational efficiencies and reduce maintenance requirements and downtime. They offer premium efficiency products for long-term energy savings. Besides being extremely efficient, its hypoid/helical gearmotors are compact in size and sealed for life. They are light, reliable, and provide high torque at low quickness unlike their worm counterparts. They are permanently sealed with an electrostatic coating for a high-quality finish that assures consistently tough, water-limited, chemically resistant products that withstand harsh circumstances. These gearmotors also have multiple standard specifications, options, and installation positions to ensure compatibility.
Specifications
Material: 7005 aluminum gear box, SAE 841 bronze worm gear, 303/304 stainless worm
Weight: 105.5 g per gear box
Size: 64 mm x 32 mm x 32 mm
Thickness: 2 mm
Gear Ratios: 4:1
Notice: The helical spur equipment attaches to 4.7 mm D-shaft diameter. The worm equipment attaches to 6 mm or 4.7 mm D-shaft diameters.
Worm Gear Quickness Reducers is rated 5.0 out of 5 by 1.
8 Ratios Available from 5:1 to 60:1
7 Gear Box Sizes from 1.33 to 3.25″
Universally Interchangeable Style for OEM Replacement
Double Bearings Applied to Both Shaft Ends
Anti-Rust Primer Applied Outside and inside Gearbox
Shaft Sleeve Protects All Shafts
S45C Carbon Metal Shafts
Flange Mount Versions for 56C and 145TC Motors
Ever-Power A/S offers a very wide selection of worm gearboxes. Because of the modular design the standard program comprises countless combinations with regards to selection of equipment housings, mounting and connection choices, flanges, shaft designs, type of oil, surface treatments etc.
Sturdy and reliable
The design of the EP worm gearbox is easy and well proven. We only use top quality components such as homes in cast iron, aluminum and stainless steel, worms in the event hardened and polished metal and worm tires in high-quality bronze of special alloys ensuring the ideal wearability. The seals of the worm gearbox are given with a dust lip which efficiently resists dust and water. Furthermore, the gearboxes are greased forever with synthetic oil.
Large reduction 100:1 in one step
As default the worm gearboxes enable reductions as high as 100:1 in one step or 10.000:1 in a double reduction. An equivalent gearing with the same equipment ratios and the same transferred power is usually bigger than a worm gearing. In the mean time, the worm gearbox is definitely in a far more simple design.
A double reduction may be composed of 2 standard gearboxes or as a special gearbox.
Worm gearbox
Ratios
Maximum output torque
[Nm]
Housing design
Series 35
5:1 – 90:1
25
Aluminium
Series 42
5:1 – 75:1
50
Cast iron
Series 52
7:1 – 60:1
130
Cast iron
Series 61
7:1 – 100:1
200
Cast iron
Series 79
7:1 – 60:1
300
Cast iron
Series 99
7:1 – 100:1
890
Cast iron
Other product benefits of worm gearboxes in the EP-Series:
Compact design
Compact design is among the key words of the typical gearboxes of the EP-Series. Further optimisation can be achieved through the use of adapted gearboxes or special gearboxes.
Low noise
Our worm gearboxes and actuators are extremely quiet. This is because of the very even working of the worm gear combined with the usage of cast iron and high precision on component manufacturing and assembly. In connection with our precision gearboxes, we take extra treatment of any sound which can be interpreted as a murmur from the apparatus. Therefore the general noise level of our gearbox is certainly reduced to an absolute minimum.
Angle gearboxes
On the worm gearbox the input shaft and output shaft are perpendicular to each other. This often proves to be a decisive benefit making the incorporation of the gearbox significantly simpler and more compact.The worm gearbox is an angle gear. This is often an advantage for incorporation into constructions.
Strong bearings in solid housing
The output shaft of the EP worm gearbox is very firmly embedded in the gear house and is perfect for direct suspension for wheels, movable arms and other parts rather than having to create a separate suspension.
Self locking
For larger gear ratios, Ever-Power worm gearboxes provides a self-locking impact, which in many situations can be utilized as brake or as extra security. Also spindle gearboxes with a trapezoidal spindle are self-locking, making them well suited for a wide range of solutions.